Visualize this e-capable manufacturing scenario. A job shop downloads a 3-D model in the STEP file format from a website. The STEP file provides direct input (STEP-NC) for the machine tool – product information such as geometry, features, machining steps and toolpaths.

It eliminates the requirement for drawings on the shop floor because a STEP-NC file describes everything the shop floor needs to know about the product and the process including all of the required tolerances. The result is a 37 percent reduction in setup time, a 75 percent reduction in data prep time and a 50 percent reduction in machining time. It is not hard to picture levels of productivity and quality rising sharply with this new process.
To start, STEP-NC fits well with current manufacturing practices because CAM systems and PC controllers are already on the shop floor. STEP-NC gives these CAM systems and controllers a common interface that will make machine tools much easier to set up and program. When the software receives a 3-D model, every facet of the process can be fully checked and simulated before execution. The program also would try every possible option to find the fastest possible spindle time. In short, STEP-NC makes developing a CNC part program more efficient because the machining instructions can be defined more concisely.
When STEP-NC is used as data input to the CNC machine tool, the dream of portable CNC programs can be realized at last because the industry could have one high level language for CNC control that can be compiled into all of the flavors needed by different machines. It is the best of both worlds: users get one language, while CNC vendors can add features to their machines, change the compiler, and have the CNC software take immediate advantage of these modifications. This is quite a leap forward for the CNC vendor whose new machine features only can be utilized by adding new codes to RS274D that have to be managed using a post processor. look at those under-utilized five-axis machine tools. With a new level of automation and optimization, fixturing and programming will become easier and safer for the machine operator.

An integrated design and manufacturing STEP database also could tie together information throughout the company and supply chain. STEP manufacturing applications on the Internet have the capacity to reduce the costs of production planning and manufacturing control for a supply chain by 30 percent or more.

Overall, industry and STEP experts have estimated that detailing will be 75 percent faster than current practices because fewer drawings will be needed to communicate all of the stages of a manufacturing process. Second, the project has estimated that STEP-NC will make the task of path planning 35 percent faster because less information has to be defined and because 3-D feature recognition can be used to accelerate the definition. Third, the project has estimated that small- to mid-sized moldmakers and machining jobs will complete their processes 50 percent faster because the information in a STEP-NC file allows a CNC system to do full safety checking and to compute the optimal speeds and feeds for the cutting tools automatically. Therefore, high-speed and five-axis machines will be used more often for small- to mid-sized job lots. The manufacturing road map has estimated that by value such job lots represent 75 percent of manufacturing.