The importance of runner analysis on design and molding seems to have been long overlooked. When many flow analyses are carried out, the focus tends to be mainly on the part and cavity.

However, the runners play a much more significant role than many realize. The polymer melt always fills the runner system first after the machine nozzle, and then proceeds into the cavity. The flow and thermal history of the melt in the runner system will have a direct impact on how the cavity is filled and part quality. Also, hot runners add additional residence times to the melt. For low shot weight and temperature-sensitive materials, the longer residence time could impose the risk of thermal degradation to the resin.

In many situations, the pressure drop in the runner system could be excessive and accountable for more than 50 percent – even more than 80 percent – of the total injection pressure. Apparently, if there is too much pressure loss in the runner system, there still would be enough pressure available at the gate to fill/pack the cavity. Poorly designed runner systems are often the root cause for many molding issues that could be resolved by only re-designing/modifying the runners without making any changes to other parts of the mold.

The very first step in designing any hot runner molds is to specify the most suitable gate type, nozzle size and manifold layout. Hot runner nozzles and manifolds usually are manufactured to different product lines according to their molding capability requirements and the inner runner bore sizes. There are strict relations between the runner sizes and the nozzle/manifold outside dimensions.

In many cases, the changes to different runner sizes would mean that a different hot runner product line would be required, which inevitably will lead to many modifications to the mold. Therefore, it’s very important to determine the correct hot runner system right from the beginning in the job quotation and tool design stage to avoid any undesirable costly changes later. The worst case could be that the mistake of putting an incorrect hot runner system on a production mold is not discovered until the mold is in the press.

One way to avoid these potential problems is through flow analysis, which can perform a molding test on the computer, check various design options, reduce design mistakes, highlight critical application areas and enhance the quality of runner system and mold.