Prior to 1987, there was very limited use of copper alloys as molding surfaces and molds using copper alloy materials were rare. It was believed by a majority at that time that copper alloys were just not strong enough,

hard enough or tough enough to endure in a mold.

In 1988 there was an article published, whose first sentence read, “Every injection and blow molder who intends to stay in business must continually ask himself, ‘What must I do to run as fast and efficiently as possible and still meet the customers’ quality requirements?’” From that point, the article went on to cite the how’s and why’s for using copper alloys in mold applications and how copper alloys would contribute to mold cycle reductions and part quality improvements.

Fast forward 19 years and ask the following:

Q. How many of the molders and moldmakers—who did or did not follow that insightful and educational information—are still in business today?

A. Statistically about 50 percent of molders and moldmakers have embraced the technology and it is believed that the holdouts who chose not to have paid the price. Some are gone from the industry completely, some have lost business and others are still out there, but struggling.

Q. Are molders and moldmakers using copper alloys effectively and efficiently in their molds?
A. In most applications the usage is still quite conservative and in many cases the copper alloy that does get used, may be the wrong alloy for the specific application. The decision to use the wrong copper alloy may be driven by misinformation about specific alloy performance, product misrepresentation, pricing or availability issues. This will lead to less than optimum performance, short component life or outright failure.

Q. Are the best products for the mold application being used or is the techno-logy being obstructed by ignorance, supplier sales pitch or misinformation?

A. There are misapplications of copper alloys all of the time. Many times the wrong copper alloy is used because of ignorance, misinformation or misrepresentations by suppliers. What may seem as an insignificant change from one product designation or brand to another can significantly impact the mold component life and performance. For example, copper alloys with similar hardness levels can have conductivity levels (the main reason for using copper alloys) only slightly higher than steel. Another example: copper alloys with hardness levels approaching 40 Rockwell “C” have very low ductility with elongations in ranges less than 3 percent. Low ductility and elongation often leads to cracking or breakage of mold components .