Applications of RE in manufacturing are widespread. There are many instances in which an existing part or prototype requires reproduction, but lacks the computer data necessary to do so with accuracy and repeatability.

Often new products, such as those produced by artistry for example, do not start from a CAD model but rather a prototype is built first. In such a case, the measurements of the new prototype are acquired so that repeatable and accurate production may ensue. Similarly, design changes are often required to an existing product for which CAD data does not exist or when shop floor changes to the product have rendered the CAD data obsolete. Numerous additional applications of RE in manufacturing exist and include the design of large equipment whose measurements can not be taken using metrology, replacement of worn or broken parts for which CAD data is unavailable, and inspection of a produced part compared to its original CAD design.1

These various examples make aluminum or steel mold production a logical extension to RE applications. Without the need to develop CAD drawings, CNC toolpaths can be obtained much sooner, leading to swift production of very complex but accurate injection molding tools. Also, prompt replacement of broken or worn molds that lack satisfactory geometric data is facilitated considerably by advancements in RE capability. Essential geometric data for the broken tool can quickly be acquired by RE its product, leading directly to toolpath generation and rapid production of the replacement tool.