Insert loading is an easy process if the mold is designed properly. Try to keep the insert and removal sides of the mold opposite. Insert on the mold “A” half and part removal on the “B” half. This limits the mold open time, but requires more mold open dimension. Have generous lead-ins for the inserts,

and avoid having any obstructions in the path of the end-of-arm-tooling (leader and horn pins).

If possible have the inserts positively located in the mold with little interference. Press fit of inserts will require mold docking and clamping to allow thrust cylinders to push the inserts into the mold. Magnets or a vacuum should be used to hold flat inserts on the mold face.

Mold and insert end-of-arm-tooling docking may be required for very accurate insert placement. The mold simply will have female taperlock style end-of-arm-tooling locators mounted in the insert side of the mold. The use of female taperlocks eliminates the need for clearance pockets in the opposite mold half. These taperlocks should be located close to the part cavity. This gives the end-of-arm-tooling a lot of stability, accuracy and keeps the overall size smaller.

Inserts can be presented to the robot end-of-arm-tooling by a simple manual shuttle drawer with fixtures for a single shot worth of inserts to a vibratory feed system with escapements and staging for an extended unattended runtime. The choice of system depends on how much investment makes sense: the difference could be as much as $100,000 to upgrade from the manual drawer to the unattended runtime solution. However, running three shifts seven days a week could justify this upgrade.

Design the mold to allow for a missing insert(s). Filling an open insert cavity during molding shouldn’t damage or require the cavity to be cleaned out to get back into a production run.