In moldmaking applications, High Energy Applied Technology (H.E.A.T.) can be used very effectively to cut inserts, core pins and insert pockets that contain contours and changing surface thicknesses.

Also in many mold applications, the parts being machined may have very little material around the details to be cut. These kinds of moldmaking-specific applications may not lend themselves to having both upper and lower nozzles sealed against the part. If even one flushing nozzle is not sealed on the part, the cut will slow down and with standard technologies can over cut or undercut during the EDM process, resulting in rework at best, and scrap parts at worst.

Slides and other mold base compo-nents that may have through holes going across the cut path would also cause poor flushing conditions as the wire breaks through the cross holes. In these areas the water jet will be dispersed by the cross details, and cause a loss of flushing pressure.

In these situations of contours, varying thickness, cross holes, counter bores and the like, high energy applied technology will produce the accuracy, geometry, speed, and surface finish that is required of today’s high quality molds.

With the availability of this newly developed technology the moldmaking industry will realize multiple benefits. First and foremost is the ability to remain competitive and profitable in a global economy. By being able to produce the same parts more quickly, shorter leadtime demands can more easily be met. Since H.E.A.T. dramatically shortens cut time without increasing wire unspooling speeds, mold shops also will see a substantial decrease in operating costs due to lower wire consumption rates. With wire being the most cost consuming item in a wire EDM’s operation, this alone could reduce annual operating costs by thousands of dollars.

Also, because H.E.A.T. incorporates other existing technologies to aid in producing straighter, more accurate parts, less time is spent making adjustments to the machine control. Finally, because jobs run with H.E.A.T. can be produced with finer surface finishes in fewer skim passes, secondary operations such as hand polishing of parts can be reduced or eliminated.