Many CAM software products produce toolpath process data and write neutral-formatted output files, like APT CL data. An external postprocessor program then translates the neutral data to a specific machine tool focusing on machine tool kinematics and controller syntax information. This traditional process has certainly been successfully applied.

However, the disjoint between the toolpath planning and postprocessing steps means that the postprocessor does not access certain information that can take advantage of the machine’s capabilities. Likewise, the CAM program often is separated from the details of the destination machine tool. The benefit of an integrated postprocessor technology is more dramatic in multi-axis applications.

Description of Local Programming Coordinate System
One example of additional information that can be passed from CAM to postprocessor to help machine performance is a description of local programming coordinate system. Most CAM systems operate on simple geometry on arbitrary orientations (such a holes, pockets and engraved lettering) by defining a local coordinate system or frame, and programming occurs in this orientation.

The postprocessor makes necessary adjustments so the postprocessed machining instructions are transformed relative to a defined part origin and reference on the machine tool. Does your postprocessor know both the part setup coordinate system (NCS) and the local programming coordinate system (frame)? For many machine controllers, this information can be used to allow 2-D style programming with canned cycles and cutter compensation to be used for many operations occurring on tilted work planes.

Functionality Regarding Connections or Linking of Multi-Axis Drill Patterns
Another example is that the CAM software can have functionality regarding connections or linking of multi-axis drill patterns. If the CAM software knows that the machine tool control has tool center point management capability, then the linking paths between these drill sequences (usually made with moves to pre-defined safety locations) can use the knowledge of the control capability together with a synchronized and collision-checked linking path to keep the cutter close to the workpiece, and avoid both collisions and avoid added cycle time caused by continually moving to safety zones. By having this information available, there is higher process assurance and higher machine tool performance.