There are three main runner shapes that are used: (1) full round (2) half round and (3) trapezoidal with each one having certain qualities and performances that may be needed to support delivery of the plastic to each cavity.

The full round is probably the most difficult to machine, as it must be machined into both halves of the mold, which must match perfectly. If they do not match the potential for affecting shear rates, the addition of square corners and sharp edges will adversely affect the plastic flow. A properly machined round runner has the best theoretical flow of the three runner shapes. Half round is the easiest to machine, but it does not have the most robust flow characteristics. The trapezoid will have better flow than the half round and is relatively easy to machine.

Adding a radius to the bottom, as shown, makes it an optimum solution. One other benefit is that when a trapezoidal runner cools it typically sinks on the flat sides, allowing for superior release. This is a good choice for materials that dictate a large runner, such as PVC. Remember, you must get runner release in order to achieve those great cycle times. Many times poor runner design limits the cycle time.

Now that we have established a cavity layout, type of runner and shape, we need to select the gate type. Always consult the design guide for the gate type and size. Any gates that are left attached to the parts may require a second operation to trim the parts, which add cost to the final product. Gates such as sub gates detach themselves during ejection, eliminating that secondary operation.

Next we have to determine the size of the gates and runners. In an optimized system we want to have the smallest runner volume and still be able to fill and pack each cavity the same. Gate size should be as small as possible without introducing shear rates above that known to cause degradation. Filled materials or those that are shear sensitive require larger gates. Contrary to popular opinion, there are normally not large pressure losses across small gates. Our instrumented molds have proven this time after time. Small gates cause shear, which untangles long molecules and lowers viscosity. A rule of thumb is that gates are 40 to 60 percent of part thickness. Gate sizes and types are many times determined by part aesthetics.

In order to minimize pressure losses we would like to maintain the same shear rates in all runners. Working from the part to the sprue bushing we will now establish the first runner size, which will be the diameter of the wall thickness, in this case .100″. When we come to a junction where plastic branches we must increase the runner size by 25 percent to .125″. Each time we branch to another runner level we again increase the runner size by 25 percent (to .156” in this case) until we reach the sprue bushing . The 25 percent increase, as described, will achieve the same shear rates above and below the runner branches. The theoretical value is 26 percent, but 25 percent is close enough.

A word of caution—if the runner has long flow lengths we may need to increase its diameter as much as another 25 percent. This can be validated during the rigorous mold tryout by doing a pressure loss study. Remember that it is easier to open a runner up rather than make it smaller. Runner and gate optimization also can be achieved using flow analysis software.

Doing your homework before the runner has been cut may save problems with trying to get a mold to fill correctly without hindering the machine’s capabilities. This gives you the best chance of delivering the plastic to each cavity at the same time with the same shear rates and the same packability.