Stress relieving is an intermediate heat treatment procedure to reduce induced residual stresses as a result of machining, fabrication and welding. The application of heat to the steel during its machining or fabrication will assist in removing residual stresses that will, unless addressed during the manufacturing by stress relieving, manifest themselves at the final heat treatment procedure.

It is a relatively low temperature operation that is done in the ferrite region, which means that there is no phase change in the steel, only the reduction of residual stresses. The temperature region is usually between 800xF to 1,300xF.

However, the higher that one goes in temperature, the greater the risk of surface oxidation there is. It is generally better to keep to the lower temperatures, particularly if the steel is a “pre-hard” steel. The hardness will be reduced if the stress relieve temperature exceeds the tempering temperature of the steel.

There is a general rule of thumb for time at temperature. It must be stated that the time is taken when the part is at temperature, not when the furnace is at temperature. The time at temperature for the processes of full anneal (not spheroidize anneal), normalize and stress relieve is 60 minutes at part temperature per one-inch of the maximum cross-sectional area.

Stress relieving is carried out on metal products in order to minimise residual stresses in the structure thereby reducing the risk of dimensional changes during further manufacturing or final use of the component.

Benefits
Machining, and cutting, as well as plastic deformation, will cause a build up of stresses in a material. These stresses could cause unwanted dimension changes if released uncontrolled, for example during a subsequent heat treatment. To minimise stresses after machining and the risk for dimension changes the component can be stress relieved.

Stress relieving is normally done after rough machining, but before final finishing such as polishing or grinding.

Parts that have tight dimensional tolerances, and are going to be further processed, for example by nitrocarburising, must be stress relieved.

Welded structures can be made tension free by stress relieving.

Application & materials
Stress relieving does not change the material’s structure and does not significantly affect its hardness.

Hardened and tempered parts to be stress relieved must be treated at a temperature around 50°C below the temperature used for previous tempering to avoid an impact on the hardness.

Stress relieving before nitrocarburising should be executed at temperatures >600°C.

Copper and brass components can also be stress relieved. For stainless steels a high temperature solution heat treatment is normally necessary.

Process details
The stress relieving temperature is normally between 550 and 650°C for steel parts. Soaking time is about one to two hours. After the soaking time the components should be cooled down slowly in the furnace or in air. A slow cooling speed is important to avoid tensions caused by temperature differences in the material, this is especially important when stress relieving larger components.

If necessary, stress relieving can be performed in a furnace with protective gas, to protect surfaces from oxidation. In extreme conditions vacuum furnaces can be used.

The temperature for stress relieving copper parts is, depending on the alloy, 150-275°C and for brass components 250-500°C.