While automation and accuracy technologies have made and are continuing to make significant progress, some of today’s most impressive innovations are taking place in the realm of spark generation and control. Tremendous strides have been made in improving the energy efficiency of diesinking EDM technology.
When many manufacturers think of the term energy efficiency, their monthly electricity bill comes to mind. In this context, though, it also refers to the amount of energy that goes into the spark generated by the EDM, as opposed to the energy that is lost during discharge. As less energy is wasted, the cutting speed and wear improves dramatically.
Machining with no electrode wear has been a goal of EDM manufacturers for decades. Most frequently, machine builders and users would attempt to manipulate machine settings to eliminate wear, typically at the cost of much slower cutting speeds. Early on, these efforts would fail due to the use of mechanical transistors that inevitably cause electrical drains. As EDM evolved and superior technology was created, electrode wear could be greatly reduced, but this required cutting at speeds so slow that it proved inefficient in real-world applications.
The creation and implementation of field programmable gate arrays (FPGAs) allowed EDM generators to make a substantial step toward reducing electrode wear by providing for much better control of the spark. During EDM machining, a spark discharge occurs right as voltage begins to drop and current picks up. As resistance between the electrode and workpiece breaks down, a plasma channel grows and then the spark is discharged. FPGAs allow the exact timing of that event to be controlled to billionths of a second.
The next step in spark control evolution comes from advanced software that greatly increases control over spark generation, resulting in 80 to 85 percent of the energy generated being used in the spark. Compared to the 8 to 50 percent attained by previous generations of EDM technology, this represents a significant improvement. By instigating this level of spark control, a much finer surface finish is produced, material is removed efficiently and electrode wear is dramatically reduced.
When machining four cavities that are each 80 mm deep, the advances of this technology become very visually apparent. much more substantial wear occurs on the electrode when the cavities are cut with a traditional generator. This results in the need for a second electrode to perform finishing operations, which costs both time and money.
A trident-shaped cavity Machined in steel with a graphite electrode, the feature resulted in electrode wear of 468 µm with a machining time of 195 minutes when cut with standard die sinking technology. Using the latest spark control technology, machining time increased slightly to 207 minutes, but electrode wear dropped to just 5 µm. Obviously, the reduction in electrodes required to cut parts more than compensates for the relatively small increases in machining times.
The benefits of new generator technology become most apparent to those moldmakers producing complex components with intricate details. In some cases, these jobs require in excess of 40 electrodes to produce a single mold. If that number can be reduced by 25 to 40 percent with little increase in machining times, the potential for savings is tremendous.
About First-rate Mold Solution Co. Ltd.
First-rate Mold Solution Co., Ltd. is based in China and engaged in supply of industry design,mold design,mold manufacturing,molding analysis,project management service,Our team has rich experience in the mold industry, We have first-class engineers in the fields of mold design, injection molding, metal stamping, metal die-casting, hot press molding and etc, we are enthusiastic to our industry and sufficiently inquisitive to learn,eternal adherents of leading-edge technologies in industrial design and manufacturing, such as the Mold technology in the United States, Germany mold technology, the mould technology in the United Kingdom, France mould technology,Italy mold technology, Japan mold technology and so on.
About firstratemold.com
our website has a lot of professional knowledge in mold industry in our blog and news section, also we are interested in CAD/CAM/CAE integration technology, such as AUTOCAD,UGNX, PRO/E,CATIA, CIMATRON, SOLIDWORKS, MOLDFLOW and so on,we warmly welcome every professional engineer, every mold maker and all those peoples who are interested in industrial design, mold design, mold manufacturing, injection mold, metal stamping mold, die-casting mold, injection molding,plastic product and other molds for industrial use to our blog and news section,we would like to share with them.
I am not sure whether this diesinking EDM technology is called new technology in mold manufacturing, but this article is very helpful for me. thanks!
thanks for your introduction.