The goals of flow analysis can range from basic knit-line location prediction to measuring the exact displacement due to anisotropic conditions on a low-tolerance part. When performed early in the design process, users of the technology save thousands of dollars in startup costs, and thousands more by improving part quality, eliminating downtime and reducing cycle times and scrap rates.
Flow simulation helps to perfect the part design by reducing or eliminating conditions that may lead to gas traps, burns, sink marks, voids or excessive warp. This is done by optimizing factors such as gate size and location, runner balancing in multicavity tools, mold design including inserts and cooling line circuitry, material selection and process conditions. The technology identifies problems in the mold before they become problems in the part, and the mold designer and moldmaker are the first line of defense in eliminating these costly tool and part problems.
The simulation serves as the perfect medium for trial-and-error techniques that are very expensive and time-consuming to perform on the mold, and must be used early in the design process to gain the most ROI. The reputations of tool designers and builders depend on how well a tool performs when it is placed in the press for the first time, and profits are gained by not having to go back and recut the tool multiple times. The competition in today’s market requires vendors to reduce costs while improving quality. Flow analysis allows moldmakers to reduce the mold building cost by 10 to 30 percent, shave weeks off the delivery time and reduce piece-part cost; this is all while improving the quality of the end product for their customer. This competitive edge represents the difference between profit and loss since the days of building in the extra startup costs of time and tool recutting are over. Modern plastic products have extreme performance standards with very strict tolerances, often involving hybrid blends of materials with many additives and stabilizers that make it impossible to know exactly what the final molded part will look like. Without understanding the characteristics of these new materials upfront, the design criteria may be outside the physical scope of cut and try tooling, which in some cases requires a complete rebuild.
Leave A Comment