Much has been written about the benefits of 5-axis machining in recent years. The intention of such information is to educate readers of actual and potential process gains.

Though not easy to measure, the author and many partners in related industries believe that the American market is under-utilizing 5-axis technologies relative to manufacturers in Europe and Japan. While not appropriate in all cases, the general benefits of 5-axis machining (reduced setups, shorter tooling, improved quality, faster throughput, lower risk and the ability to enable more complex design geometries) can be revealed in many cases.

In many mold and die applications, users can get the tooling and setup benefits of multi-axis machining by seeking solutions with a locked pivot axis and active use of the rotary axis. This process is called 4+1 machining. In addition to facilitating improved dynamics, this process also takes advantage of the typically higher performing rotary (C) axis on a machine tool.

Mold components often have features with small radii that produce corners and edges on finished components. Historically, these features have been made with an additional EDM process operation. With five-axis machine tool technology, these features are often machined today. Small cutter diameters required to produce these features may be ineffective with long cutter stick-out lengths. The machining performance improves for small cutter diameters that have short cutter lengths with tapered thick shafts. A five-axis machine is generally used to accommodate thick-shaft tooling requirements.