In the molding cycle, cooling efficiency is undoubtedly a very important factor, and it’s impact on mass production is very significant, many factors impact process inconsistency. For example, temperature variations in mold are detrimental to process control and lead to mold damage, and hot spots cause premature  mold damage. So how can process control become more consistent? The key is mold watering.

However, even in a shop with treated water, scaling of mold circuits can occur. Treatment processes have improved over the last decade, but they still do not act as a complete fail-safe against the potential of decreased water flow.

A toolroom can troubleshoot changes within a mold watering schematic if the technician measures the appropriate data when a mold is in a good running state. Here are the critical measurables within a mold watering system and guidelines for using this data to identify water issues.

Turbulent Flow

Best described as the rolling and churning action of water, turbulent flow is a primary driver of mold temperature consistency. Increased turbulent flow via improved rolling action expands the water against the circuit wall, which enhances the performance of water circuits and improves temperature consistency across mold surfaces and components. Poor turbulence leads to mold hot spots and temperature fluctuations.

Best practice for mold mapping is to record both GPM and pressure drop for each circuit while the mold is in a good running state. This helps to pinpoint changes in water when improper heat conditions are apparent.

Circuit Identification

When mapping mold circuits, label each circuit with a number exclusive to the circuit and a supply or return designation (e.g., 1 IN, 1 OUT, 2 IN, 2 OUT). Flow direction is essential for mold mapping because when water flow reverses, poor turbulence and hot spots occur. For example, baffles require water to flow in a specific direction, and cascades can be receivers of buildup.

GPM

Another key measurable for determining turbulent flow is measuring the amount of water passing through the mold every minute. Higher numbers ensure that adequate water flow and an acceptable turbulent flow level. Minimum turbulent flow is 12 to 14 GPM, and an optimal flow rate is 20 GPM.

If the water exiting is too close in pressure, then flow resistance is low, and turbulence is impeded by passing too easily through the circuit. You can increase pressure drop by using smaller lines on the return side of the mold. Changes in pressure on either side may also indicate a problem with the water system or a thermolator that is not working correctly.

Mapping the circuitry of your mold is crucial in water troubleshooting events. By adequately recording water data, your company improves its ability to pinpoint changes within the mold watering system quickly. Historical data is a the best defense against changes within the process control schematic.